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The problem of sample background correction in differential scanning calorimetric curves is
addressed in this paper. An equation is derived for the heat capacity of the system, which
corresponds to the sample background. Thereby, it is assumed that during the thermal event the
system is a two-component mixture of the initial substance and the final product. According to
this model, the variation in heat capacity of the system is due both to the increase in the partial
concentration of the product at the expense of the initial substance and to the physical change in
the specific heats of the two components, resulting from the temperature increase. The final result
of the derivation is an integral equation which can be solved by means of a numerical technique.
The algorithm used is presented in detail. The model is general, and can be applied to diverse
exothermic or endothermic processes, The melting of a semi-crystalline polymer and the cure
process of a thermoset are given as demonstrative examples. The method improves the reliability
and the reproducibility of the data.

With the advent of on-line data processing with microcomputers, differential
scanning calorimetry (DSC) is becoming increasingly popular in both scientific and
industrial routine applications. The main areas of interests are the cure kinetics of
thermosets and the melting (crystallization) of thermoplastics. Without computers,
a kinetic analysis with chart operation for a thermoset cure, for example, is very
time-consuming. A microcomputer working on-line with a differential scanning
calorimeter requires less than a minute to do a more extensive analysis. The high
speed of data processing allows the workers in this field to apply sophisticated
numerical techniques to improve the quality of results. This paper reports a
numerical computation technique which can be applied to separate the DSC data
from the sample background in a systematic manner. The theory presented here is
general, and can be applied to many exothermic or endothermic transitions studied
by means of DSC.
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1064 BANDARA: A SYSTEMATIC SOLUTION
The problem of sample background correction in DSC

The problem of sample background correction arises from the fact that the
specific heat of the system continuously changes during the thermal event (e.g.
curing, melting, etc.) from the level of the initial substance(s) to that of the final
product. To obtain the net effect due to the thermal event, the course of the heat
capacity change, which we call the sample background, should be subtracted from
the data corrected for the instrumental baseline. (Correction of data for the
instrumental baseline is usually done by subtracting the blank curve from the direct
data.) Though the sample background correction is a severe problem which affects
the quality and the reproducibility of the data, very little attention is paid in the
literature to the solution of the problem. In the prevailing standard methods to be
found in the literature, the initial and the final levels of the specific heats are merely
connected by straight lines or sigmoidal curves without any rationale. In the case of
a thermoset cure, the DSC curve obtained by repeating the heating cycle on the
cured sample is also taken as the sample background. Straight lines or sigmoidal
curves may not necessarily represent the real sample background, because the
specific heat of the system during the thermal transition depends on both the
current degree of conversion and the temperature. At the same time, the repeat cycle
used in the thermoset cure represents the real sample background only at the
extreme end of the cure process. It poorly represents the sample background at the
starting side of the cure process, which is also the most decisive part of the
thermogram in the kinetic analysis.

Theoretical considerations

In this section, we shall develop a simple theory with the aim of calculating the
heat capacity of the system, which is variable during the thermal event. To do this,
we make the following assumption: during the thermal event the system is a two-
component mixture of the initial substance(s) and the final product, and the overall
heat capacity of the system is determined additively by the instantaneous partial
composition of the individual components. It is emphasized here that we recognize
not only the gradual change in partial composition of the individual components
during the event, i.e. from zero to unity for the product, but also the physical
changes in specific heat of the two components due to the temperature increase.
This is extremely important, because the thermal events for polymers take placeina
temperature range which is wide enough to bring about physical specific heat
changes. In the case of thermoplastic melting, the two components are the solid
polymer and the polymer melt. In the case of a thermoset cure, they are the uncured
resin system and the final cured material.
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The validity of our assumption is unquestionable for the usual thermoplastic
melting (or crystallization) processes, because it is improbable that there is a third
intermediate phase involved in the transition, whose specific heat is completely
different from the other two. As for the thermoset cure, however, we must impose
some restrictions, because the degree of crosslinking of the “product” increases
gradually until the final degree of crosslinking is attained. This is equivalent to
saying that there are an infinite number of intermediates with different chemical
structures involved in the cure process. For this reason a single product cannot be
defined and the assumption appears to lose its validity for the case of a thermoset
cure. We discuss this problem in Section 3 with some details. For the present, let us
continue with the theory for the case where the chemical structures of the two
individual components in the transient mixture do not change, and there is no third
phase involved in the event.

It follows from the above assumption that the sample background, F(¢), which is
directly proportional to the heat capacity of the transient mixture with the
proportionality constant being the heating rate, can be written as

F(t) = a{P,(t)— Py(1)} + Py (D) 1

where ¢ = the time coordinate, which is proportional to temperature for constant
heating rates; o = the partial concentration of the product, which is by definition
equal to the current degree of conversion; P,(f) = the DSC signal for the product
alone, which can be estimated through linear extrapolation of the portion of the
total curve after the thermal event (for a thermoset cure this is approximately equal
to the signal for a repeat cycle); P(r) = the DSC signal for the initial substance(s)
in the absence of the event, which can be estimated through linear extrapolation of
the portion of the total curve prior to the thermal event; and F(¢) is the sample
background which is to be calculated. The linear extrapolations applied to estimate
P, and P, are justified for the reason that the specific heats of most inorganic and
organic materials vary linearly with the temperature. Exceptions are temperature
ranges in which third-order type transitions, such as the glass transition, are
involved. It is very seldom the case that the glass transition of polymers takes place
just prior to the melting of thermoplastics.
The current degree of conversion, a, is given by definition as

[1G()— F() dr
o= 0

T @
‘f) {G()—F(1)} dt

where G(r) = the total signal corrected for the instrumental background; and
t, = the time of termination of the thermal event. Figure 1 shows G(¢), P,(¢), and
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P (1) for a typical situation which arises in the case of thermoplastic melting, while
Fig. 2 explains the meaning of Eq. 1 graphically. Substitution of Eq. 2 into Eq. I
yields

(G(f)— F(t)} dt

F() = {Py(0)— P (0} + Py(D) 3)

1

{G(@t)— F(t)}dt

Sty | Oty =

»
T

da/dt , mw
™

-2

Fig. 1 Typical shapes of the functions G(r), Py(f), Py(1) and F(f) for the melting of low-density
poly(ethylene). F(¢) was calculated via Eq. 3
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Fig. 2 Diagram showing the relation between P,(#), P,(f) and « at a specific time ¢’

It should be noted that Eq. 3 accounts for the heat capacity variation of the system
due to both the conversion and the temperature (or time) increase. The equation
also satisfies the following two boundary conditions; at zero conversion, i.e. a=0,
the sample background tends to take the form of P;(¢); and at complete conversion,
i.e. o= 1, it tends to take the form of P,(¢). We must now solve this equation for F(¢)
so as to obtain the sample background which we are looking for. An analytical
solution would be difficult, even if simple analytical expressions are available for the
functions involved. However, we could develop an iterative algorithm on a personal
computer to find a numerical solution for F(¢). The algorithm can be outlined as
follows: at first, P,(z) itself is treated as an approximate solution to F(r), and the
right-hand side of Eq. 3 is evaluated with this to find F(z). The outcoming solution
for F(r)is a better approximation than the initial input. In the next iteration the new
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value of F(r) becomes the input. In this way four iterations are done. In practice,
four iterations are sufficient to get a fair solution which does not change in further
iterations. In the Appendix some programming hints are given in detail. The
technique can be applied in different situations involving polymers.

Demonstrative examples

Thermoplastic melting

As a typical example for non-isothermal thermoplastic melting, a low-density
poly(ethylene) sample was taken. This polymer has markedly different specific heats
in the melt and the solid phase. Figure 1 shows the calculated sample background,
together with the functions involved in Eq. 3. P,(¢) is the linear extrapolation of
G(¢) prior to the melting process, while P,(7) is that of the melt. In Fig. 3, the
calculated F(¢) is plotted as a function of « for this case. By interchanging P,(¢) and
P,(t), we could have applied the same computation of F(¢) for non-isothermal
crystallization of the polymer.

0 0.2 0.4 06 0.8 1.0
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Fig. 3 Diagram showing the relation between the calculated sample background, which is directly
proportional to the heat capacity of the system, and the degree of conversion. The data
correspond to those in Fig. 1

Thermoset cure

Figure 4 shows the sample background correction for a commercially available
epoxy-phenolic resin. P,(¢) is taken as the linear extrapolation of G(¢) prior to the
cure process, while P,(¢) is the repeat cycle. As in the case of thermoplastic melting
demonstrated above, the calculated sample background satisfies the boundary
conditions at zero and complete conversion. It goes over smoothly from P,(¢) to
P,(1). However, as pointed out earlier, the assumption of an additive relation for

5 J. Thermal Anal. 31, 1986



1068 BANDARA: A SYSTEMATIC SOLUTION

2 6
€
€ s
[«
B
4i—
3
2
-
o L | | L
0 ) 10 15 20
Time , min

Fig. 4 Typical shapes of the functions G (), Py(t), P,(¢) and F(r) for the cure of epoxy resin. P,(t) was
obtained from a repeat cycle after the cure. F(1) was calculated via Eq. 3

the heat capacity (Eq. 1) is not strictly valid in this case. This is because we cannot
define a single product, for the reason that the degree of crosslinking is continuously
changing until the final cured material is obtained, i.e. there is an infinite number
of intermediates. In other words, we are making an error by taking the repeat cycle
as P,(). To be strict, we must substitute P,(¢) by the actual DSC signal for the cured
fraction of resin with the current crosslink density, say P’(¢), which is in fact
impossible to estimate. It is now argued that the impact of the error on the final
result is not serious: the magnitude of the deviation of P’(¢) from the repeat cycle,
P,(¢), is maximum at the beginning of the reaction (x=0), and it is zero at the end
(@=1). However, Eq. 1 tells us that for small values of « the function F(¢) is
contributed to largely by P,(¢), no matter how large the values of P,(r) may be.
Therefore, any error in P,(¢) in this range has a small impact on the final result of
F(1). At the same time, the function F(¢) is contributed to largely by P,(¢) in the
terminating range of the cure process, i.e. for higher values of «. However, the
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Fig. 5 Diagram showing the relation between a calculated sample background and the degree of
conversion. The data correspond to those in Fig. 4
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impact on F(r) is again small, because the deviation of P(¢) from P,(¢) itself is
small. It follows that the error associated with F(r) is maximum in the
neighbourhood of «=0.5. The worst case of this error can be estimated if we
recognize that P'(¢) should always lie between P, (1), and therefore the deviation of
P'(t) from P,(¢) is always smaller than that of P,(¢) from P,(¢). For the example
shown in Fig. 3, the latter mentioned deviation is about 0.16 mW. This value times
o (0.5) is equal to about 0.02% of the total DSC signal in this range. In Fig. 5, the
calculated F(¢) is plotted as a function of « for this case.

Figure 6 shows DSC curves for the isothermal cure of an epoxy-phenolic resin.
The sample background can be computed with similar arguments given above for
the non-isothermal case. It may be noted that P,(#) and P,() are parallel to the time
coordinate in the isothermal part in Fig. 4. This is a consequence of our assumption
that the specific heats of the two components in the mixture depend on the
temperature.
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Fig. 6 Typical shapes of the functions G(z), P,(¢), P,(1) and F(¢) for a thermoset under isothermal cure.
F(t) was calculated via Eq. 3

Experimental

The chemistry of the materials which served as examples in Section 3 has no
relevance in the context of this work. They are merely typical classical examples,
and are not described here.

For the experiments reported here, a Perkin-Elmer DSC 4 apparatus was used,
which was operated in conjunction with a Perkin—Elmer Thermal Analysis Data
Station 3600. The data collected in the data station were transferred to an IBM
personal computer via the auxiliary communication port of the data station
(RS232). To acquire and process data, programs were written in IBM PC APL. The
personal computer took 50 seconds to perform the numerical evaluation of the
sample background when the number of data points in G(¢r) was 512 and the
number of iterations was 4.
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Concluding remarks

Throughout the above discussion it was assumed that the total DSC curve has
been corrected for the instrumental baseline. This is usually done by subtracting a
blank curve from the direct DSC signal. According to Eq. 3, an instrumental
baseline correction is not necessary if the baseline is parallel to the time axis within
the range of the thermal event.

Application of the reported method in the construction of the sample
background leads to reproducible results, as we have experienced in the laboratory.
The reproducibility of the measurements is much better than if the sample
background is assumed to be a straight line or a sigmoidal curve.

Figures 3 and 5 indicate that the heat capacity of the system is nearly directly
proportional to the degree of conversion. This is evidence of the correctness of the
solution we have found for Eq. 3. The smali deviation from direct proportionality is
due to the accompanying physical specific heat change due to the temperature
increase, i.e. the variation of the slope (P,(¢) — P(¢)) and the intercept (P,(¢)) of the
straight line in Fig. 2. The smooth transition of F(¢) from P,(¢) to P,(¢) indicates
that the calculated sample background is at least closer to reality than the straight
line or sigmoidal type sample background curves which are constructed without
any underlying law.

Appendix

To solve Eq. 3 in the text numerically, the following programming steps are
recommended.

1. Define the vectors, G(f), P,(¢) and P,(¢), so that all have an equal number of
elements. The corresponding time vector, ¢, contains the same number of elements,
which are equidistant. P, should contain the values given by'P,(¢) = mi+c, wherem
and c are the slope and intercept, respectively, of the linear part of G(¢) prior to the
thermal event. For thermal events such as thermoplastic melting, P,(r) is similar to
P,(¢), but contains values corresponding to the linear part of G(¢) after the thermal
event. For a thermoset cure, P, should be the repeat cycle.

2. Set F(t) equal to P,(z) and evaluate the right-hand side of Eq. 3. To do this,
each element of P,(¢) and P,(7) is considered. The corresponding current degree of
conversion, «, is determined by dividing the integral G(t)— F(#), with the
integration limits being given by the beginning of the event and f, which
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corresponds to the current elements of P,(#) (or P,(¢)), by the integral G(¢)— F(¢)
for the whole range.

3. Set the evaluated F(r) equal to the input F(¢) and perform step 2 again. Repeat
this procedure until F(¢) does not change further when the output of the preceding
iteration is put equal to the input of the next.

Zusammenfassung — Diese Arbeit spricht das Problem der Probenuntergrundkorrektur an, das bei den
Thermogrammen der Dynamischen Differenzkalorimetrie auftritt. Es wird eine Gleichung fiir die
Wirmekapazitit der Probe bzw. den Probenuntergrund hergeleitet. Dabei wird angenommen, daB das
System wihrend des thermischen Geschehens eine Zweikomponenten-Mischung darstelit. Laut diesem
Modell findet eine Aenderung der Wirmekapazitit deswegen statt, weil die partielle Konzentration der
Probe auf Kosten des Ausgangsmaterials zunimmt, und weil dic TemperaturerhGhung eine physikalische
Aenderung der spezifischen Wirme der zwei Komponenten herbeifiihrt. Das Resultat der Herleitung ist
eine Integralgleichung, die mit Hilfe eines numerischen Verfahrens gelost werden kann. Der dabei
angewandte Algorithmus wird beschrieben. Das Modell ist allgemein giiltig und auf verschiedenartige
thermische Prozesse anwendbar. Als Beispiele dienen das Schmelzen eines teilkristallinen Polymers und
der Aushdrtungsvorgang eines Harzsystems. Das Verfahren verbessert die Reproduzierbarkeit und die
VerlaBlichkeit der Daten.

Pesiome — B crathe obcyxneHa npobiaema xoppekiuu ¢ona npobst nis kpussix JJCK. Briseneno
ypaBHEHNE TEILJIOEMKOCTH CHCTEMBI, KOTOPOE COOTBeTCTBYeT Qony npobul. Ilpu 3ToM npeanonara-
JIOCh, YTO BO BPEMsi TEPMHYECKOro COOBITHA CHCTEMa SABJIETCH [BYXKOMIIOHEHTHOH, cocTosLel u3
HCXOAHOrO M KoHeunoro semiects. COIJIACHO 3TOH MOZENH M3MCHEHHC TEMJIOEMKOCTH CHCTEMBI
06yCIOBJIEHO KaK yBEIH4EHHEM NTapiHaIbHOH KOHICHTPALMH [IPOAYKTA 3a CHET HCXOJHOTO BEHIECTBa,
TaK U QU3MYECKUM H3MCHEHHEM, BCJICACTBMH YBEIHUCHHMA TEMIEPATYpPbi, YACHAbHON TEIIOCMKOCTH
NBYX KOMIOHeHTOB. KoHeuHbiM pe3dyibTatoM auddepeHIMpoBaHHS SBJILIETCH HHTETPAJIbHOE ypas-
HEHHe, PeLlIaeMOoe YHCIOBLIM MeTo40M. [1oapoGHO onHcan HCNOAB3YEMBIi [UTA 3TOMH LETH aJIFOPUTM.
Mpencrasnennas Monenb ABisercd obwed U MoxeT ObiTh NPUMEHEHA K DPA3IMYHBIM 9K30- H
3HI0TEPMHYECKHM NpoileccaM. B kauecTse npuMepoB NpUBeJEHO IIABIEHAE NOJYKPUCTAILIMYECKOTO
noJinMepa ¥ MpoLece OTBEPXK/ICHMS TEPMOILIACTHKA. MeTo yBeIMUMBAET HANEKHOCTh M BOCHPOH3BO-
IUMOCTb MOJYYaeMbIX aHHbIX.
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